

Observing Application

Date : Feb, 29 2012 Proposal ID : VLBA/12A-455 Legacy ID : BM371 PI : Matthew Middleton Type : Director's Discretionary Time - Target of Opportunity Category : Energetic Transients and Pulsars Total Time : 12.0

Resolving the nature of the only ULX jet detected in the radio band

Abstract:

The recent discovery of a new ultraluminous X-ray source (ULX) in M31 has allowed for the first genuine opportunity to detect the presence of radio emission that may be associated with a jet, an expected feature should the unknown compact object be an intermediate mass black hole (IMBH). Our recent EVLA ToO has provided the first highly significant evidence for this. The emission does not appear to be nebular in origin as seen for other ULXs with the inverted radio spectrum suggesting that we are observing a persistent, optically thick jet from a sub-Eddington accreting IMBH. Importantly however the X-ray spectrum appears inconsistent with this identification. A 12 hour ToO with VLBA will determine whether the emission is compact and unresolved, from a resolved jet, or (though unlikely) from a diffuse nebular region. From this ToO we will be able to resolve the issues surrounding the inconsistent X-ray spectrum and obtain a more complete understanding of the emission and nature of the compact object. As the lifetime of the outburst is unknown, we request that a DDT observation be performed in the very near future to avoid the likelihood of the source decaying into quiescence.

Authors:

Name	Institution	Email	Status
Matthew Middleton	Durham, University of	m.j.middleton@dur.ac.uk	
James Miller-Jones	Curtin University of Technology	james.miller-jones@curtin.edu.au	
Robert Fender	Southampton, University of	rpf@phys.soton.ac.uk	
Sera Markoff	Universiteit van Amsterdam	s.b.markoff@uva.nl	
Timothy Paul Roberts	Durham, University of	t.p.roberts@durham.ac.uk	
Martin Henze	Max Planck Institute For Extraterrestrial Physics	mhenze@mpe.mpg.de	

Principal Investigator:	Matthew Middleton
Contact:	Matthew Middleton
Telephone:	07971342748
Email:	m.j.middleton@dur.ac.uk

Related proposals:

Joint:

Not a Joint Proposal

Observing type(s):

Continuum, Single Pointing(s)

VLBA Resources

Name		Details	Stations			Observing Parameters		Correlation Parameters		
VLBA-X	Wavelength:	3.6 cm	VLBA Br 🖌	√ Fd	Hn 🖌	Кр 🖌	Bandwidth: Baseband	16 MHz 8	Full Polarization Pulsar Gate	✓
	Processor:	Socorro-DiFX	La 🖌 Pt 🖌	Mk 🖌 Sc 🖌	NI 🖌	Ov 🖌	Channels Sample Rate	32	Correlator Passes	1
	Observing	Standard	HSA Ar	Ef	GBT		(Msample/s) Bits/Sample	2	Integration Period (sec) Spectral	2.0
			VLA-Y27				Polarization	Dual	Points /BBC	16
			Geodetic	;			Agg. Bit Rate (Mbits/sec)	512	Fields	1

Sources:

Name	Position		Velocity		Group
	Coordinate System	Equatorial	Convention	Radio	M31 ULX
XMMU J004243.6+412519	Equinox	J2000			
	Right Ascension	00:42:43.6	Ref. Frame	LSRK	
		00:00:00.0			
	Declination	+41:25:19.0	Velocity	0.00	
		00:00:00.0			

Sessions:

Name	Session Time (hours)	Repeat	Separation	GST minimum	GST maximum	Elevation Minimum
ULX detection	12.00	1	0 day	01:30:00	14:00:00	0

Session Constraints:

Name	Constraints	Comments
ULX detection		Full VLBA track for maximum sensitivity.

Session Source/Resource Pairs:

Session Name	Source	Resource	Time	Figure of Merit
ULX detection	XMMU J004243.6+412519	VLBA-X	12.0 hour	0.03 mJy/bm

Staff support: None

Plan of Dissertation: no